Stability Properties for Generalized Fractional Differential Systems

نویسنده

  • DENIS MATIGNON
چکیده

In the last decades fractional di erential equations have become popular among scientists in order to model various stable physical phenom ena with anomalous decay say that are not of exponential type Moreover in discrete time series analysis so called fractional ARMA models have been proposed in the literature in order to model stochastic processes the auto correlation of which also exhibits an anomalous decay Both types of models stem from a common property of complex variable functions namely mul tivalued functions and their behaviour in the neighborhood of the branching point and asymptotic expansions performed along the cut between branching points This more abstract point of view proves very much useful in order to extend these models by changing the location of the classical branching points the origin of the complex plane for continuous time systems Hence sta bility properties of and modelling issues by generalized fractional di erential systems will be adressed in the present paper systems will be considered both in the time domain and in the frequency domain when necessary a distinc tion will be made between fractional di erential systems of commensurate and incommensurate orders R esum e Ces derni eres ann ees les equations di erentielles fractionnaires ont et e de plus en plus utilis ees par les scienti ques d esireux de mod eliser divers ph enom enes physiques stables mais pr esentant une d ecroissance lente c est a dire qui ne soit pas de type exponentiel D autre part dans le domaine de l analyse des s eries temporelles des mod eles ARMA fractionnaires ont et e pro pos es de fa con a mod eliser des processus stochastiques dont l autocorr elation est aussi a d ecroissance lente Ces deux types de mod eles proviennent d une propri et e commune des fonctions de la variable complexe a savoir les fonc tions multivalu ees et leur comportementau voisinage du point de branchement ainsi que des d eveloppements asymptotiques e ectu es le long de la coupure qui relie les points de branchement Ce point de vue plus abstrait r ev ele toute son utilit e lorsqu on veut etendre ces mod eles en changeant la position des points de branchement classiques l origine du plan complexe pour les syst emes en temps continu Ainsi nous etudierons les propri et es de stabilit e des syst emes di erentiels fractionnaires g en eralis es et les cons equences sur la mod elisation nous consid ererons les syst emes tant dans le domaine temporel que dans le domaine fr equentiel et si n ecessaire nous ferons la distinction entre syst emes di erentiels fractionnaires d ordres commensurables ou incommensurables

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On asymptotic stability of Prabhakar fractional differential systems

In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given. 

متن کامل

Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability

This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...

متن کامل

The fuzzy generalized Taylor’s expansion with application in fractional differential equations

In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...

متن کامل

On asymptotic stability of Weber fractional differential systems

In this article, we introduce the fractional differential systems in the sense of the Weber fractional derivatives and study the asymptotic stability of these systems. We present the stability regions and then compare the stability regions of fractional differential systems with the Riemann-Liouville and Weber fractional derivatives.

متن کامل

Multi-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems

In this article‎, ‎the multi-step conformable fractional differential transform method (MSCDTM) is applied to give approximate solutions of the conformable fractional-order differential systems‎. ‎Moreover‎, ‎we check the stability of conformable fractional-order L"{u} system with the MSCDTM to demonstrate the efficiency and effectiveness of the proposed procedure.

متن کامل

System of fuzzy fractional differential equations in generalized metric space

In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008